Extracellular pH alkalinization by Cl-/HCO3- exchanger is crucial for TASK2 activation by hypotonic shock in proximal cell lines from mouse kidney.

نویسندگان

  • S L'Hoste
  • H Barriere
  • R Belfodil
  • I Rubera
  • C Duranton
  • M Tauc
  • C Poujeol
  • J Barhanin
  • P Poujeol
چکیده

We have previously shown that K(+)-selective TASK2 channels and swelling-activated Cl(-) currents are involved in a regulatory volume decrease (RVD; Barriere H, Belfodil R, Rubera I, Tauc M, Lesage F, Poujeol C, Guy N, Barhanin J, Poujeol P. J Gen Physiol 122: 177-190, 2003; Belfodil R, Barriere H, Rubera I, Tauc M, Poujeol C, Bidet M, Poujeol P. Am J Physiol Renal Physiol 284: F812-F828, 2003). The aim of this study was to determine the mechanism responsible for the activation of TASK2 channels during RVD in proximal cell lines from mouse kidney. For this purpose, the patch-clamp whole-cell technique was used to test the effect of pH and the buffering capacity of external bath on Cl(-) and K(+) currents during hypotonic shock. In the presence of a high buffer concentration (30 mM HEPES), the cells did not undergo RVD and did not develop outward K(+) currents (TASK2). Interestingly, the hypotonic shock reduced the cytosolic pH (pH(i)) and increased the external pH (pH(e)) in wild-type but not in cftr (-/-) cells. The inhibitory effect of DIDS suggests that the acidification of pH(i) and the alkalinization of pH(e) induced by hypotonicity in wild-type cells could be due to an exit of HCO(3)(-). In conclusion, these results indicate that Cl(-) influx will be the driving force for HCO(3)(-) exit through the activation of the Cl(-)/HCO(3)(-) exchanger. This efflux of HCO(3)(-) then alkalinizes pH(e), which in turn activates TASK2 channels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of The Apical Na/H Exchanger NHE3 By Formate : A Basis of Enhanced Fluid and Electrolyte Reabsorption By Formate in the Kidney Proximal Tubule

Formate stimulates sodium chloride and fluid reabsorption in kidney proximal tubule, however, the exact cellular mechanism of this effect remains unknown. We hypothesized that the primary target of formate is the apical Na/H exchanger. Here we demonstrate that formate directly enhances the apical Na/H exchanger (NHE3) activity in mouse kidney proximal tubule. In the absence of CO2/HCO3, additio...

متن کامل

Proximal renal tubular acidosis in TASK2 K+ channel-deficient mice reveals a mechanism for stabilizing bicarbonate transport.

The acid- and volume-sensitive TASK2 K+ channel is strongly expressed in renal proximal tubules and papillary collecting ducts. This study was aimed at investigating the role of TASK2 in renal bicarbonate reabsorption by using the task2 -/- mouse as a model. After backcross to C57BL6, task2 -/- mice showed an increased perinatal mortality and, in adulthood, a reduced body weight and arterial bl...

متن کامل

Regulation of B-type intercalated cell apical anion exchange activity by CO2/HCO3-.

The cortical collecting duct (CCD) B cell possesses an apical anion exchanger dissimilar to AE1, AE2, and AE3. The purpose of these studies was to characterize this transporter more fully by examining its regulation by CO2 and HCO3. We measured intracellular pH (pHi) in single intercalated cells of in vitro microperfused CCD using the fluorescent, pH-sensitive dye, 2',7'-bis(2-carboxyethyl)-5(6...

متن کامل

Activation of the apical Na+/H+ exchanger NHE3 by formate: a basis of enhanced fluid and electrolyte reabsorption by formate in the kidney.

Formate stimulates sodium chloride and fluid reabsorption in kidney proximal tubule; however, the exact cellular mechanism of this effect remains unknown. We hypothesized that the primary target of formate is the apical Na(+)/H(+) exchanger. Here, we demonstrate that formate directly enhances the apical Na(+)/H(+) exchanger (NHE3) activity in mouse kidney proximal tubule. In the absence of CO(2...

متن کامل

Identification of an apical Cl-/HCO-3 exchanger in rat kidney proximal tubule.

SLC26A6 (or putative anion transporter 1, PAT1) is located on the apical membrane of mouse kidney proximal tubule and mediates Cl-/HCO3- exchange in in vitro expression systems. We hypothesized that PAT1 along with a Cl-/HCO3- exchange is present in apical membranes of rat kidney proximal tubules. Northern hybridizations indicated the exclusive expression of SLC26A6 (PAT1 or CFEX) in rat kidney...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 292 2  شماره 

صفحات  -

تاریخ انتشار 2007